# The Max Planck Fellowship Program

**Страна:**
Germany;

**Дедлайн:**
01.07.2016

**Тип гранта:**
Scholarships;

**Веб-сайт:**
aei.mpg.de

**Область наук:**
Общенаучные;

The Max Planck Society has established a fellowship program for foreign post-doctoral researchers. Outstanding non-German scientists are invited to apply and spend up to two years at the Albert Einstein Institute in Potsdam and Hannover.

The Albert Einstein Institute (AEI) offers a stimulating and dynamic research environment with broad opportunities for junior scientists. The institute is one of the world's leading centers for gravitational physics, and it is unique in the breadth and depth of its approach to the subject. Scientists at the AEI focus on all aspects of Einstein's theory of general relativity. Their research ranges from geometrical and analytical aspects of the theory to the unification of general relativity and quantum mechanics all the way to the modeling, data analysis, and astrophysics of gravitational waves. It also covers experimental approaches and techniques required to open a new window to the Universe and to test predictions of general relativity.

General informationEach year the AEI will grant a limited number of Max Planck fellowships to outstanding foreign post-doctoral scientists who wish to spend up to two years at the institute.

The Max Planck fellowship program offers three different stipends, depending on research track-record and achievements (net monthly stipend of €2,100, €2,300 or €3,000) plus some benefits and moving-cost reimbursements.

Application informationCandidates interested in Max Planck fellowships should fill out a form (which is different depending on the AEI division they plan to be associated to, please see below) and upload a cover letter, curriculum vitae, list of publications, and statement of past, current and future research interests. Electronic Portable Document Format (PDF) submittals are strongly preferred. Applicants would need to indicate the names of three referees for recommendation letters. Referees will be notified by email on how to upload the letters.

The Max Planck Society is committed to increase the number of women and individuals with disabilities in its workforce in areas where they are under-represented. Thus, it encourages applications from such qualified individuals.

Astrophysical and Cosmological Relativity Division (Potsdam)

The research carried out in this division aims at developing accurate analytical and numerical models of gravitational-wave sources, improving our ability to extract unique astrophysical and cosmological information from the observed waveforms, and testing Einstein’s theory of general relativity.

In particular, the division focuses on several aspects of gravitational-wave astronomy, including (i) theoretical gravitational dynamics (post-Newtonian theory, gravitational self-force approach, perturbation theory and effective-one-body formalism), (ii) numerical simulations of gravitational-wave sources, (iii) source modeling and analysis of data from gravitational-wave detectors, and (iv) astrophysics of compact objects. Members of the division have the opportunity to join the LIGO Scientific Collaboration through the group's membership. They could also be involved in Pulsar-Timing-Array projects and the eLISA mission.

The gravitational-wave data-analysis research also includes work on the detection of continuous gravitational-wave signals through a subgroup located at the AEI campus in Hannover. Postdoctoral candidates interested in this research topic are also encouraged to apply.

The "Astrophysical and Cosmological Relativity" division has high-performance computer clusters to run numerical-relativity simulations, and carry out source modeling and data-analysis studies.

The "Astrophysical and Cosmological Relativity" division has ties with the Physics Department at the University of Maryland, notably the gravitation theory and experimental groups, and the Joint Space-Science Institute.

The call for applications for Max Planck fellowships that start in Fall 2016 is closed.

If you need more information please contact [email protected]

Geometric Analysis and Gravitation Division (Potsdam)

The core research in this division is in Mathematical Relativity: mathematical models and mathematical foundations underlying physical concepts of space, time and gravitation. Particular emphasis is put on methods involving nonlinear partial differential equations related to Einstein’s equations in General Relativity and other geometric deformations, as well as methods from geometric measure theory and from the calculus of variations.

In the context of isolated gravitating systems the stability of black holes and their horizons motivate research projects on asymptotically flat initial data sets, energy inequalities and marginally trapped surfaces. These studies make extensive use of recent progress on elliptic and parabolic geometric partial differential equations. Estimates for nonlinear wave equations on curved background spaces are another important topic connecting to hyperbolic types of partial differential equations.

As the AEI is in the process of seeking a new director for this division, applications have to be postponed until the director’s position is filled.

Laser Interferometry and Gravitational Wave Astronomy Division (Hannover)

The final goal of all activities of this division is the detection of gravitational waves and the development of gravitational-wave astronomy. This comprises the development and operation of large gravitational-wave detectors on the ground as well as in space, but also a full range of supporting laboratory experiments in quantum optics, atomic physics, and laser physics.

The division operates the GEO600 gravitational wave detector in cooperation with UK partners in Glasgow and Cardiff. The GEO collaboration is a world leader in gravitational-wave detector technology development. The laser systems designed for GEO600 are key components in the upgrade of the LIGO gravitational wave detectors in the USA.

The division also operates a 10 m prototype interferometer which provides an ultra-low displacement noise environment, a large scale ultra-high vacuum envelope, a highly stabilized 35 W laser, extensive environmental monitoring, and full digital control infrastructure and data management. The first experiment to be set up in this facility is a Michelson interferometer to explore the standard quantum limit (SQL) of interferometry.

The division plays a leading role in the development of the space-based gravitational wave detector LISA (Laser Interferometer Space Antenna). The current mission design for the ESA L3 mission opportunity is called evolving LISA (eLISA). In preparation for eLISA, the division has a major role in the LISA Pathfinder mission, which will be launched in the fall of 2015 to demonstrate and test the measurement and control systems designed for eLISA.

Further, eLISA technology is used for Earth observation and will improve future satellite geodesy missions. The division contributes a laser interferometer to fly on the GRACE Follow-On mission which will launch in 2017 to observe the critical indicators of climate change through changes in Earth's gravitational field.

Applications for positions in this division are accepted at any time throughout the year.

**To apply for a Max Planck fellowship in the Laser Interferometry and Gravitational Wave Astronomy Division please go to this dedicated web-page.**

If you need more information please contact [email protected]

Observational Relativity and Cosmology Division (Hannover)

Research in this division is focused on the direct observational consequences of Einstein's general theory of relativity, particularly as it relates to astrophysics and cosmology.

The research focuses primarily on searches for gravitational waves in data from the most sensitive ground based interferometric detectors. These include searches for long lived signals from rapidly rotating neutron stars, transient signals from the coalescence of compact objects in binary systems and unmodelled burst signals. Through the division’s affiliation to the LIGO Scientific Collaboration group members may enjoy full access to data from the LIGO, Virgo and GEO600 detectors.

Scientists in the division also search for electromagnetic emissions from neutron stars and have discovered several new radio and gamma-ray pulsars. The group operates the ATLAS computing cluster: with its 13000+ CPU cores and 1000+ GPUs this is the world's largest and most powerful resource dedicated to gravitational wave searches and data analysis. The division also help run the [email protected] project, which uses computing power donated by the general public to search for gravitational waves and electromagnetic emission from neutron stars.

Applications for positions in this division are accepted at any time throughout the year.

**To apply for a Max Planck fellowship in the Observational Relativity and Cosmology Division please go to this dedicated web-page.**

If you need more information please contact [email protected]

Quantum Gravity and Unified Theories Division (Potsdam)

Research in this division is purely theoretical and brings together some of the most exciting challenges of modern physics and mathematics. The overall goal is the unification of general relativity and quantum mechanics into a theory of quantum gravity, which should also provide a consistent framework for incorporating the other fundamental forces in nature.

A consistent theory of quantum gravity seems to be required to answer questions about the early universe and the nature of black holes. Several candidate theories have been put forward over the last decades. On the one hand, supergravity and super-string theory aim for a unification of gravity with the other fundamental interactions, and have their roots in quantum field theory. The requirement of mathematical consistency and the non-renormalizability of perturbatively quantized gravity, and the need to incorporate the non-gravitational interactions are likely to force us to modify Einstein's theory at the smallest distances. This may lead an entirely new type of theory, which could explain how space-time is dissolved at very small distances, and in which Einstein's theory emerges only as an effective low energy theory. On the other hand, non-pertubative approaches such as loop quantum gravity, spin foams and group field theory proceed from basic principles of General Relativity. These canonical approaches emphasize the geometrical aspects and appear well suited to deal with unsolved conceptual issues of quantum gravity, such as e.g. the problem of time or the interpretation of the wave function of the universe.

As it is far from clear what a consistent theory of quantum gravity will look like and what its main features will be, the division aims to represent all the major current approaches to quantum gravity.

The call for applications for Max Planck fellowships that start in Fall 2016 is closed.

If you need more information please contact [email protected]