The lifting force of the wing in accordance with new ideas about the whirlwind.

Based on the theory of movement of a flying saucer and experiments conducted to confirm it, as well as the pattern of wing flow observed in a viscous fluid, it can be argued that the lifting force is formed as a result of the forces of intermolecular repulsion and attraction (short-range and long-range) and is equal to them. That is, the lifting force is equal to the thermal energy released from the air.

The figure shows the motion of the boundary layer in a viscous fluid. Viscosity increases the thickness of the layer and allows you to consider the process in detail. First, it must be borne in mind that the flow process is not constant, but rhythmic. The forces of attraction and repulsion prevail alternately, gradually reaching minima and maxima, which we observe as turbulence. This rhythm leads to flutter.

When the wing crashes into the air, squeezing it in front of itself, the distance between the molecules decreases, and they repel each other due to their thermal energy. Molecular repulsion forms rarefied air. Further, attraction begins to act between the molecules, and they tend to attract each other. Due to the fact that during the impact on the leading edge, molecule received an impulse leading to the release of repulsive and attractive forces, their speed gets bigger.

Therefore, they bend around the trailing edge and move under the wing against flight, reaching the leading edge, where, slowing down, they are cut off by molecules repelling from it. Due to this collision, a stream of smoke blowing the wing in the wind tunnel to the last tends to go over the upper part of the wing, even if it is moved strongly down. Thus, the shape of the wing leads to the fact that air from the upper surface flows under the lower one and creates an increased pressure there. An aerodynamic profile convex on both sides allows this force to act in the direction of flight. Molecules continue to be repelled and attracted like a spring, and after being left behind the wing like turbulence.

Science Categories: